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1. Introduction

In modern engineering, multi-state system (MSS) is a kind of sys-
tem that represents a capability allowing for more than two perform-
ance states in a system besides perfect functionality and complete 
fault [21]. Compared with the two-state system, MSS can define the 
components states of a system, and express the effect of the changes 
of component performance on system performance more flexibly and 
precisely. In the 1970s, Barlow and Wu [2] first proposed the concept 
of MSS and gradually established the related theory. Then, the reli-
ability theory of MSS has been widely concerned by scholars. And the 
following reliability analysis methods for MSS have been developed: 
the extended Boolean model method [22, 26], random process theory 

[1, 14, 18], Monte-Carlo simulation method [23, 25], function model 
method [8, 16, 31], Bayesian network method [13, 29], and so on.

The uncertainty, which is caused by the insufficient information 
about internal structures, the scarcity of historical data and the change-
ability of operation environment, is one of the most crucial problems 
in MSS reliability analysis. Therefore, it is very difficult to define 
and obtain the component state performances and state probabilities. 
Meantime, the boundaries among component fault states fail to define 
and obtain with precision. So the traditional probability-based method 
is no longer applicable. However, non-probabilistic methods, such as 
evidence theory [7], grey system theory [33], probability-box [27], 
and fuzzy theory [15, 30], have been proposed and developed for reli-
ability analysis of complex uncertainty MSS.
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Analiza niezawodności złożonych systemów wielostanowych obarczona jest niepewnością związaną ze złożonością ich struktu-
ry, ograniczoną liczbą próbek badawczych i niewystarczającymi danymi dotyczącymi niezawodności. W przedstawionej pracy, 
wprowadzenie elementów matematyki rozmytej i teorii szarych systemów do sieci bayesowskiej umożliwiło budowę modelu szarej 
rozmytej sieci bayesowskiej i zaproponowanie metody  analizy  niezawodności  złożonych systemów wielostanowych w warunkach 
niepewności, która wykorzystuje niedeterministyczną funkcję przynależności oraz pojęcie interwałowej wielkości  charakterystycz-
nej. Zastosowanie trapezoidalnej funkcji przynależności z rozmytą zmienną promienia nośnego do opisu stanu uszkodzenia kom-
ponentu, pozwala zniwelować wpływ subiektywnego czynnika ludzkiego na wybór funkcji przynależności i eliminuje konieczność 
precyzyjnego definiowania stanu uszkodzenia systemu i jego elementów składowych. Opracowana tabela prawdopodobieństw 
warunkowych zawierająca szare liczby interwałowe  pozwala wyrazić niepewne zależności logiki uszkodzeń między systemem a 
jego składnikami. Ponadto, w pracy skonstruowano model planowania parametrów charakterystycznych wielkości niezawodności 
systemu wyrażonych w  postaci wartości interwałowych. W ostatniej części artykułu omówiono dwie serie eksperymentów nume-
rycznych, których wyniki pokazują, że proponowana metoda stanowi skuteczne i obiecujące podejście do analizy niezawodności 
złożonych systemów wielostanowych w warunkach niepewności.

Słowa kluczowe: analiza niezawodności, sieć bayesowska, złożony system wielostanowy, niepewność, matema-
tyka rozmyta, teoria szarych systemów.
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Based on the probability theory and the graph theory, Bayesian 
network not only can effectively express the complex logical relations 
in the system, but also has a unique two-way reasoning mechanism, 
so it is particularly suitable for the reliability analysis of complex sys-
tems which have characteristics of high reliability, longevity, small 
samples. Bayesian network has been widely used in reliability analy-
sis [3, 24], security analysis [9, 12], fault diagnosis [4, 17] and other 
fields. By introducing fuzzy set theory to Bayesian network model, 
a novel method of multi-state system reliability analysis is proposed 
by He et al.[11], which considers the multi-state, the fuzziness, and 
the changes of failure probability with time of the system, and its va-
lidity and practicality are verified by the flexible lifting system of a 
high-speed elevator. In view of the shortcomings of Bayesian network 
method and T-S fault tree method, Yao and Chen [28] propose the 
fuzzy reliability evaluation method, and conduct reliability evaluation 
on the hydraulic system of roadway transportation vehicles. Consid-
ering the relevant failure and incomplete coverage, Cai et al. [5] pro-
pose a reliability evaluation method for redundant systems based on 
Bayesian network, and evaluate the reliability of the subsea blowout 
preventer control system. In reference [10], a multi-state system relia-
bility analysis method based on intuitionistic fuzzy Bayesian network 
is proposed, which effectively solves the problem that the accurate 
probability of different state of Bayesian network root node is difficult 
to determine. To sum up, although certain research results have been 
achieved based on Bayesian network, such as using the precision val-
ue for reasoning analysis, the introduction of fuzzy technology, and 
so on, there are still shortcomings in the existing reliability analysis 
methods by using Bayesian network model for complex uncertainty 
multi-state systems, the main problems are as follows:

(1) In the traditional reliability analysis methods, the fuzzy support 
radius variable of membership function of descripting fault state is a 
fixed value, such as in references [6, 28]. Although the traditional reli-
ability analysis method can solve some reliability analysis problems 
of MSS, it is hard to avoid introducing too much subjective informa-
tion in the process of constructing the membership function, which 
can lead to deviation and affect the accuracy of the analysis results.

(2) The traditional Bayesian network reliability method is under 
the precondition of the determined fault logic relationship, for exam-
ple, in references [5, 10]. But due to the lack of reliability data, the 
limited test samples and the complicated running environment, using 
the exact value to describe the uncertain fault logic relationship be-
tween the system and its components cannot satisfy the requirement 
of reliability analysis for complex systems.

Fuzzy mathematics and grey system theory are the most active 
uncertain system theories which have attracted more and more atten-
tion in the field of reliability [19]. In order to solve the above prob-
lems, the membership function in fuzzy mathematics and the interval 
grey number in grey system theory are introduced to the Bayesian 
network. Then, the model of the grey fuzzy Bayesian network is built, 
and the reliability analysis method of complex uncertainty multi-state 
system with the non-deterministic membership function and the in-
terval characteristic quantity is proposed in this paper. The proposed 
method uses the trapezoidal membership function with fuzzy support 
radius variable to describe the fault states of the component, and uses 
the conditional probability table containing interval grey numbers  
to substitute for the traditional conditional probability table. Further-
more, a parameter planning model of the system reliability character-
istic quantities is constructed, and the obtained reliability characteris-
tic quantities of system are expressed in the form of interval values.

This paper is organized as follows: in Section 2, grey fuzzy Baye-
sian network method for system reliability modeling and analysis is 
introduced, and the flow chart and its specific process interpretation 
are given. Detailed steps of grey fuzzy Bayesian network method are 
introduced in Section 3. Two sets of numerical experiments are car-

ried out and discussed to show the validity and advantages of the pro-
posed method in Section 4. In Section 5, conclusions are drawn.

2. Grey fuzzy Bayesian network method for system reli-
ability modeling and analysis

Bayesian network (BN) is a directed acyclic network that is com-
posed of a directed acyclic graph (DAG) and a conditional probability 
table (CPT). Directed acyclic graph consists of nodes and edges. A 
node of DAG is used to represent the variable, which may be a unit, 
a failure mode, an attribute, a fault status, and so on. The edge points 
from the parent node to the child node, which represent the depend-
ent relation between the parent node and the child node in the DAG. 
A node that does not have a parent node is called a root node which 
can represent a component variable. A node that does not have a child 
node is called a leaf node which can represent a system variable. 
Other nodes are called intermediate nodes which can represent the 
subsystem variables. Conditional probability table can quantitatively 
describe the causal failure logic relationship among nodes, that is, the 
logical relationship between the system and its components.

Fuzzy mathematics studies the uncertainty problem by means of 
membership function. Therefore, the trapezoidal membership func-
tion with fuzzy support radius variable r is constructed to describe the 
fault state of the component in our study. Grey system theory studies 
the uncertainty problem that part of the information is known, part 
of the information is unknown and part of the information is scarce 
[19]. According to the known partial information, the range of values 
of some parameters can be determined, but the exact values of some 
parameters can not be known in system reliability analysis, so inter-
val grey number  is introduced to the conditional probability table. 
Thus, the conditional probability table containing interval grey num-
bers  is constructed to describe the uncertain fault logic relation-
ship between the system and its components. Taking advantages of 
the above two theories, the grey fuzzy Bayesian network method for 
system reliability modeling and analysis is shown in Fig.1.

The proposed method extends the traditional node variables to the 
grey fuzzy Bayesian network nodes to express the fuzzy uncertain 
fault state during the fault evolution process of the system and its 
components, and the traditional conditional probability table is ex-
tended to the conditional probability table with interval grey numbers 
to express the uncertain fault logic relationship between the system 
and its components. As can be seen from the Fig.1, the specific pro-
cesses are as follows:

Analyze the basic principle of the system, clarify the fault (1) 
states and failure modes of the system and its components, and 
establish the directed acyclic graph of the system Bayesian 
network.
According to the fault states and fault modes of the component, (2) 
the trapezoidal fuzzy number (TrFN) with fuzzy support radius 
variable r is constructed to describe the fuzzy uncertainty of 
the fault state during the fault evolution process of the system 
and its components, as shown in Section 3.1.
The conditional probability table with interval grey numbers is (3) 
constructed to substitute for the traditional conditional proba-
bility, which can describe the uncertain fault logic relationship 
with grey system information characteristics between system 
and its components, as shown in Section 3.2.
According to the steps (1)-(3) and the corresponding defini-(4) 
tions of the system reliability characteristic quantities, the 
corresponding system reliability characteristic function is ob-
tained, as shown in Section 3.3.
Taking the system reliability characteristic function as the ob-(5) 
jective function, and taking the intervals of the interval grey 
numbers as the constraints, the parameter planning model of 
the reliability characteristic quantities is constructed. The op-
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It is assumed that the system and its components have two fault 
states (fault-free and fault) or three fault states (fault-free, semi-fault 
and fault), represented by fuzzy numbers 0, and 1 or 0, 0.5 and 1 re-
spectively, and the fault state of the node xi (i=1, 2,…, n) is ik

ix  (ki=1, 
2,…, αi). Then the sum of the membership degrees of the components’ 
current fault state must be 1. In other words, the components for the 
two fault states must satisfy equation (2), and the components for the 
three fault states must satisfy equation (3):

 0 1( ) ( ) 1i ik k
i ix xµ µ+ =

 

 (2)

 
0 10.5( ) ( ) ( ) 1i i ik k k

i i ix x xµ µ µ+ + =
 

 (3)

If the fault state of the node xi (i=1, 2,…, n) is ik
ix  (ki=1, 2,…, αi) 

in grey fuzzy Bayesian network, making use of the trapezoidal mem-
bership number function shown in Fig.2, combining equation (2) and 
equation (3) at the same time, then the trapezoidal membership func-
tion with the fuzzy support radius variable r is constructed, and shown 
in Fig.3. The variable r (0 ≤ r ≤ 0.25) is the fuzzy support radius of the 
trapezoidal membership function.

Fig. 3. Membership function of the component fault states ik
ix with variable r

According to Fig.3, the deterministic region and the uncertain region 
of the trapezoidal membership function vary with the value of the 
fuzzy support radius variable r. Take Fig.3 (b) for an example, when 
r = 0, the trapezoidal membership function is transformed into the tri-
angular membership function, as shown in Fig.4, and when r = 0.25, 
the trapezoidal membership function is transformed into the rectangle 
membership function, as shown in Fig.5. From Fig.3 (a) and (b), by 

timization algorithm is used to analyze the reliability of the 
leaf node and the state importance measures of the root nodes. 
Based on analysis results, system reliability and component 
state importance measures can be evaluated, as shown in Sec-
tion 3.4.

Fig. 1. Grey fuzzy Bayesian network method of reliability modeling and anal-
ysis

3. Detailed steps of grey fuzzy Bayesian network 
method 

3.1. The construction of the TrFN with fuzzy support radius 
variable r

In engineering practice, the system and its components tend to ex-
hibit multiple failure modes and multiple fault states during the evolu-
tion from normal operation to complete failure, and there is no strict 
boundary among fault states, which has certain fuzzy uncertainty. The 
membership functions describing the fault states of the system and its 
components include a triangular membership function, a trapezoidal 
membership function, a rectangular membership function, and so on.

The trapezoidal membership function is widely used in practical 
engineering and reliability analysis because of its intuitive expres-
sion and simple algebraic calculation. For ease of use, the trapezoidal 
membership function X is selected to describe the fault states of sys-
tems and components, and represented as:

 X= (xc, r, r, f, f ) (1)

In equation (1), xc is the center of the fuzzy number support set, r 
is the support radius variable, f is the fuzzy area, as shown in Fig. 2.

Fig. 2. Trapezoidal membership function

(b) Three fault states ik
ix

(a) Two fault states ik
ix
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the calculation of the equation (2) and equation (3), the membership 
degree of each fault state can be obtained, as shown in Table 1 and 
Table 2.

Fig. 4. The membership function of fault state ik
ix  when r=0

Fig. 5. The membership function of fault state ik
ix  when r=0.25

From Table 1 and Table 2, when ik
ix ∈[0, 1], ik

ix  all satisfies 
equation (2) or equation (3). For example, when ik

ix ∈(r, 0.5-r), we 

substitute  ik
ix  in equation (3) and get 

0.5 0 1
0.5 2 0.5 2

i ik k
i ir x x r

r r
− − −

+ + =
− −

, 

which verifies the correctness of Table 2. Similarly, Table 1 can be 
verified.

3.2. The description of conditional probability table

Due to the cognitive limitations on the internal structures, the op-
erational behavior, the constituent element parameters, and the lack 
of historical data related to the product, the fault logic relationship 
between the system and its components has a large degree of grey 
information characteristics in the system. In the process of analysing 
system reliability, if this relationship is simply represented as the ex-
act value, this will lead to the loss of some important information and 
the result of system reliability analysis will be deviated. In order to 
fully exploit system reliability information and clarify the fault logic 
relationship between the system and its components, interval grey 
number   defined in interval [0, 1] is used to replace the exact value 
of conditional probability in traditional Bayesian network. For any 
grey fuzzy Bayesian network containing n nodes with m fault states, 
the conditional probability table can be expressed in Table 3.

In Table 3, each row represents the conditional prob-
ability that the child node is in a certain fault state under differ-
ent combinations of fault states of the parent nodes, for example 

1 2 1,1, ,( 1| 0, 0, , 0)n mP y x x x= = = = = ⊗


  
indicates that the con-

ditional probability that node y in the fault state 1 is interval grey 
number 1,1, ,m⊗



 when the nodes x1, x2, …, xn are all in the fault state 0, 
and satisfy the 1,1, ,1 1,1, , 1,1, , 1i m⊗ + + ⊗ + + ⊗ =

  

 
. In the field 

of engineering, 1,1, ,m⊗


represents the conditional probability of node y 
in completely fault state caused by external factors like human opera-
tion errors, environmental factors, and so on.

3.3. System reliability characteristic quantities

3.3.1. Fault state of leaf node

In the grey fuzzy Bayesian network, we assume the root node var-
iable is xi (i=1, 2, …, n), the intermediate node variable is yj (j=1,2,…, 
m), and the leaf node variable is T. According to the bucket elimina-
tion, if the current fault states of nodes xi are 1x′ , 2x′ ,…, nx′ , the grey 
fuzzy possibility of the leaf node T in the fault state qT  is:

1
1

11
1

1 1
, ,
, ,

1 1 1
( ) ( ) ( )

( ) ( , , ; , , ; )

( | ( )) ( | ( )) ( | ( )) ( ) ( )

n
m

k knn
m

q n m q
x x
y y

q m m nx x
T y y

P T T P x x y y T T

P T T T P y y P y y x x
λ λ λ

λ λ λ µ µ

⊗ ⊗
′ ′

⊗ ⊗ ⊗

′ ′= = =

′ ′= = × × × ×

∑

∑ ∑ ∑





 

 

 

 
(4)

In equation (4), ( )qP T T⊗ =  is the grey fuzzy possibility of the 
leaf node T in the fault state qT ; λ(T) is the parent nodes set of leaf 
node T; λ(yi) is the parent nodes set of intermediate node yj; ( )kii

ix
xµ ′



 
is the membership degree of the current fault state ix ′ corresponding 
to the fuzzy set.

3.3.2. Grey fuzzy state importance measures

The state importance measure ( )
q

De
T iI x  indicates the possibility 

which separately causes the system leaf node T to be the fault state Tq 
when the root node xi is in the fault state ix′ . It reflects the influence 
degree of the root node xi in the fault state ix′  to the leaf node T in the 

Table 1. The membership degree of fault states ik
ix  with two fault states

Membership degree 

of ik
ix

0~r r ~1-r 1-r ~1

0 ( )ik
ixµ



1 1
1 2

ik
ir x

r
− −

−
0

1 ( )ik
ixµ



0
1 2

ik
ix r

r
−

−
1

Table 2. The membership degree of fault state ik
ix  with three fault states

Member-
ship degree 

of ik
ix

0~r r~0.5-r 0.5-
r~0.5+r 0.5+r~1-r 1-r~1

0 ( )ik
ixµ



1 0.5
0.5 2

ik
ir x

r
− −

−
0 0 0

0.5 ( )ik
ixµ 0

0.5 2

ik
ix r

r
−
−

1 1
0.5 2

ik
ir x
r

− −
−

0

1 ( )ik
ixµ



0 0 0 0.5
0.5 2

ik
ix r

r
− −

−
1
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4.1. Set of experiments #1: validation example

To verify the effectiveness of the proposed method, the hydraulic 
suspension system in the large hydraulic truck is presented in this sec-
tion. The detailed results and related discussions are as follows.

The large hydraulic truck is a special vehicles with electro-hy-
draulic driving, steering and lifting. It possesses the characteristics of 
heavy load handling, manoeuvrability, high stability, and so on, which 
is widely used in high-speed railway construction, shipbuilding, high-
way bridges, petrochemical, military and other fields. The hydraulic 
suspension system is the control system of driving and steering, which 
plays an important role in the large hydraulic truck.

Take the Bayesian network model of the hydraulic suspension sys-
tem in reference [6] as an example, according to the presented method 
in our study, the membership function with fuzzy support variables 
is established and substitute into the Bayesian network model. It is 
assumed that the fuzzy support variable r = 0.1 and the values in the 
conditional probability table are all the exact values in the grey fuzzy 
Bayesian network. In this situation, the model parameters that we con-
structed are the same as those in reference [6].

4.1.1. Fault states of leaf node for the hydraulic suspension system

With Table 2, equation (4) and equation (6), the grey fuzzy pos-
sibility of leaf node T in different fault states is obtained, as shown in 
Table 4.

The analysis results in Table 4 show that the maximum and mini-
mum values of grey fuzzy possibility of leaf node T in different fault 
states are the same. Therefore, the analysis results are the same as the 

previous methods in reference [6], and the correctness and feasibility 
of the proposed method can be verified in the reliability analysis of 
leaf node.

4.1.2. Grey fuzzy state importance measures for the hydraulic 
suspension system

With Table 2, and equation (4) to equation (6), state importance 
measures of root nodes are obtained in the grey fuzzy Bayesian net-
work, as shown in Table 5.

Table 5 shows that the results of the grey fuzzy state importance 
measures of root nodes are the same as the results in reference [6], and 
the correctness and feasibility of the proposed method can be verified 
in the analysis of state importance measures.

fault state Tq. The grey fuzzy state importance measure of the root 
node xi can be defined as:

 ( ) max{[ ( | ) ( | 0)],0}
q

De
T i q i i q iI x P T T x x P T T x⊗ ⊗′= = = − = =    (5)

In equation (5), ( | )q i iP T T x x⊗ ′= =  indicates the grey fuzzy pos-
sibility of the leaf node T in the fault state Tq when the root node xi 
is in the fault state ix′ ; ( | 0)q iP T T x⊗ = =  indicates the grey fuzzy 
possibility of the leaf node T in the fault state Tq when the root node 
xi is in the fault state 0.

3.4. The algorithm for solving system reliability characteris-
tic quantities

When fault state of the component is described by the membership 
function with the fuzzy support radius variable r, and the conditional 
probability table containing the interval grey number i⊗  is used to 
describe the uncertain fault logic relationship between the system and 
its components, the parameter planning model of the system reliabil-
ity characteristic quantities can be constructed, as shown in equation 
(6). The system reliability characteristic quantities can be obtained by 
the parameter planning model:

 

1 2

1 1 1

2 2 2

max(min) ( , , , )

. .

n

n n n

f
a b
a b

s t

a b

⊗ ⊗ ⊗

≤ ⊗ ≤
 ≤ ⊗ ≤


 ≤ ⊗ ≤





 (6)

The essence of the above parameter planning model is to solve the 
problem of the extreme value of the function mapping by a series of 
interval grey numbers in a certain interval, which can be obtained by 
commercial optimization software, such as Matlab, Isight, and so on. 
The objective function in the parameter planning model is obtained 
by above Tables and equations. For the comparison of the reliability 
characteristic quantities between the nodes, each size of quantity can 
be determined in the light of the interval value size comparison rule 
proposed by Nakahara et al.[20].

4. Numerical examples

The two sets of numerical examples are conducted in this sec-
tion. The first set is a validation experiment based on the example 
presented by Chen et al.[6]. The second set is an example of satellite 
propulsion system, which is exemplified to show the advantages of 
the proposed method in terms of coping with complex uncertainty 
multi-state systems.

Table 3. Conditional probability table of grey fuzzy Bayesian network

x1 x2 … xn 1 2( 0 | , , , )nP y x x x=  … 1 2( | , , , )nP y i x x x=  … 1 2( 1 | , , , )nP y x x x= 

0 0 … 0 1,1, ,1⊗
 … 1,1, ,i⊗



… 1,1, ,m⊗


  



 

i i i , , ,1i i⊗


 , , ,i i i⊗


 , , ,i i m⊗






   

1 1 1 , , ,1m m⊗
 … , , ,m m i⊗

 … , , ,m m m⊗


Table 4. Grey fuzzy possibility of leaf node T in different fault states

Leaf node Fault state Interval value

T

0 [0.082, 0.082]

0.5 [0.111, 0.111]

1 [0.807, 0.807]
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From the discussion in this section, it is conclude that in the proc-
ess of modeling and method validation, setting 
the fuzzy support radius variable as a fixed val-
ue (r = 0.1) and setting the value of the condi-
tional probability table as all the exact values is 
a special form of the proposed method based on 
the grey fuzzy Bayesian network, which does 
not affect the accuracy of verification results. In 
Section 4.2, we apply the proposed method to 
the satellite propulsion system to illustrate the 
advantages of this method.

4.2. Set of experiments #2: Satellite 
propulsion system

The satellite propulsion system is the power 
system that implements functions such as satel-
lite aberration, attitude control, orbit reposition, 
and so on. Its performance directly affects the 
control accuracy and longevity of the satellite. 
According to statistics, due to the adverse en-
vironment in outer space, the fault possibility 
of the satellite propulsion system is relatively 
higher, which is of great significance for the 
reliability study.

4.2.1. Satellite propulsion system modeling

The structure of monopropellant propulsion 
system is small and compacted, which is the 
most commonly used propulsion system in the 
field of low and medium orbit satellites. It main-
ly includes tank (TK), feeding valve (FDV), fil-
ter (F), self-locking valve (SLV), pressure sen-
sor (PS) and thruster (TH), as shown in Fig.6. 
The tank provides propellant for thrusters, and 
the amount of propellant flowing out is deter-
mined by the number of thrusters currently in 
operation. The feeding valve is adding and dis-
charging the pressurizing gas and propellant of 
the storage tank. The filter is used to filter im-
purities from the propellant to prevent blockage 
of the piping system. The self-locking valve is 
used to control the opening and closing of pipe-

lines and ensure the one-way flow of propellant. The pressure sensor 
measures the current pressure of the propellant in the pipeline in real 
time and sends the measured value to the ground receiving equipment. 
The thruster is the core component of the propulsion system, provid-
ing propulsion for the system.

The monopropellant propulsion system adopts redundant struc-
ture, where the TH2 is backup branch for the TH1 branch, and if there 
is a normal operation, the system will work properly. If both branches 
fail, the system is in the fault state. Because of the uncertain fault logic 
relationship between the system and its components, when any branch 
is in fault and another branch is in semi-fault, the system may be in 
fault, semi-fault, or work properly. Based on Fig.6, Bayesian network 
of monopropellant propulsion system is constructed, as shown in 
Fig.7. Node y1 of series subsystem represents the fault state of the 
TH1 branch that is formed by connecting PS1, SLV1, F1 and TH1 in 
series. Similarly, node y2 of series subsystem represents the fault state 
of the TH2 branch that is formed by connecting PS2, SLV2, F2 and 
TH2 in series. And node y3 represents the fault state of a subsystem 
that is formed by connecting PS3, FDV1, FDV2 and TK in series. 
Leaf node T represents reliability of the entire monopropellant propul-
sion system which is made up of a parallel system y (formed by con-
necting y1 and y2 in parallel) and a series subsystem y3 in series.

According to analysing the system fault modes and fault mecha-
nisms, the components possessing the three states are the filter and 

Table 5. Grey fuzzy state importance measures of root nodes

xi

Grey fuzzy state importance measures

0.5 ( )De
iI x 1 ( )De

iI x

x1 [0.096, 0.096] [0.000, 0.000]

x2 [0.000, 0.000] [0.000, 0.000]

x3 [0.000, 0.000] [0.013, 0.013]

x4 [0.000, 0.000] [0.031, 0.031]

x5 [0.000, 0.000] [0.041, 0.041]

x6 [0.000, 0.000] [0.011, 0.011]

x7 [0.000, 0.000] [0.029, 0.029]

x8 [0.000, 0.000] [0.073, 0.073]

x9 [0.000, 0.000] [0.071, 0.071]

Fig.6.  The structure of monopropellant propulsion system

Fig.7.  Bayesian network of monopropellant propulsion system
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the thrusters. The multistate of the filter is reflected in a variety of 
fault modes, namely normal, poor filtering effect and blockage. When 
the filtering effect is not good, the branch in which the filter is nor-
mal, semi-fault and fault has certain possibility. The multistate of the 
thrusters is shown in the number of the fault thruster. That is, xi

0 = 0, 
xi

0.5 = 0.5, xi
1 = 1, i = 3, 4, 7, 8. And other components are deemed to 

be fault-free and fault, that is, xi
0 = 0, xi

1 = 1, i = 1, 2, 5, 6, 9, 10, 11, 
12. According to historical data, engineering experience and expert 
knowledge [11, 32], with interval grey number  [19], the conditional 
probability table is constructed, as shown in Table 6 to Table 8. Each 
row in Table 6 to Table 8 represents the conditional probability of 
child node fault under different combinations of fault states of parent 
nodes.

4.2.2. Fault states of leaf node T for satellite propulsion system

If the current fault state of root nodes are x′1 = 0.3, x′2 = 0.4, x′3 
= 0.2, x′4 = 0.6, x′5 = 0.3, x′6 = 0.7, x′7 = 0.1, x′8 = 0.7, x′9 = 0.3, x′10 = 
0.4, x′11 = 0.2, x′12 = 0.8. The membership degree of fault state of xi 
can be calculated from Table 1 and Table 2, as shown in Table 9 and 
Table 10.

Table 6. Conditional probability table of node y1

x1 x2 x3 x4

P(y1= |x1~x4)

0 0.5 1

0 0 0 0 1 0 0

0 0 0 0.5 1⊗

[0.18,0.32]
2⊗

[0.38,0.53]
0.25

0 0 0 1 0 0 1

0 0 0.5 0 0.25 0.6 0.15

0 0 0.5 0.5 0.19 3⊗

[0.42, 0.58]
4⊗

[0.27, 0.38]

0 0 0.5 1 0 0 1

     



1 1 1 1 0 0 1

Table 7. Conditional probability table of node y2

x5 x6 x7 x8

P(y2= |x5~x8)

0 0.5 1

0 0 0 0 1 0 0

0 0 0 0.5  5⊗
[0.18,0.32]

6⊗

[0.38,0.53]
0.25

0 0 0 1 0 0 1

0 0 0.5 0 0.25 0.6 0.15

0 0 0.5 0.5 0.19 7⊗
[0.42, 0.58]

8⊗
[0.27, 0.38]

0 0 0.5 1 0 0 1

     



1 1 1 1 0 0 1

Table 8. Conditional probability table of leaf node T

y1 y2 y3
P(T= |y1~y3)

0 0.5 1

0 0 0 1 0 0

0 0 1 0 0 1

0 0.5 0 1 0 0

0 0.5 1 0 0 1

0 1 0 1 0 0

0 1 1 0 0 1

0.5 0 0 1 0 0

0.5 0 1 0 0 1

0.5 0.5 0 0.26 9⊗

[0.35, 0.48]
10⊗

[0.25, 0.36]

0.5 0.5 1 0 0 1

0.5 1 0 11⊗

[0.15, 0.28]
0.42 12⊗

[0.32, 0.45]

0.5 1 1 0 0 1

1 0 0 1 0 0

1 0 1 0 0 1

1 0.5 0 13⊗

[0.15, 0.28]
0.42 14⊗

[0.32, 0.45]

1 0.5 1 0 0 1

1 1 0 0 0 1

1 1 1 0 0 1

Fig. 8. The grey fuzzy possibility of leaf node T

(a) Leaf node T=0 (b) Leaf node T=0.5 (c) Leaf node T=1
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The objective function in the parameter programming model can 
be obtained from Table 9, Table 10 and equation (4). And the grey 
fuzzy possibility of the leaf node T in different fault states can be 
obtained by solved the parametric programming model with Matlab. 
The extreme value of the grey fuzzy possibility of the leaf node T in 
different fault states varies with the fuzzy support radius variable r, 
as shown in Fig. 8.

From the perspective of system reliability, under the condi-(1) 
tion of the current fault state of the components, due to the 
uncertainty caused by the complex structures, the limited test 
samples, and the insufficient reliability data of the modern sys-
tems, the grey fuzzy possibility of leaf node T may be at any 
point on two curves and in the green area between two curves. 
Obviously, the results of system reliability analysis are quite 
different due to uncertainty.
When 0 ≤ (2) r < 0.2, the uncertainty of the root node decreases 
with the increase of the variable r, meanwhile, the difference 
between the maximum and minimum of the grey fuzzy pos-
sibility of fault state of the leaf node T decreases. Take the 
grey fuzzy possibility of the leaf node T = 0 for an example, as 
shown in Table 11.
When 0.2 < (3) r ≤ 0.25, it is calculated that the membership de-
gree of the fault states of the nodes y1, y2 change with the value 
of the variable r, and the membership degree of the fault states 
of the nodes y3 is 0. And it is calculated from Table 8 that the 
grey fuzzy possibility of the leaf node T in different fault states 
is a straight line which is independent of the value of the vari-
able r.
For generality, the midpoint of the fuzzy support radius vari-(4) 
able r is selected, namely r = 0.125, to analyse the reliability 
of the system. Besides, we can also choose the value of the 
variable r based on expert knowledge. And the membership 
functions of the fault state of root nodes are trapezoidal mem-
bership functions, and grey fuzzy possibility of leaf node T in 
different fault states is obtained, as shown in Table 12.

From Table 12, according to the comparison rule of interval values 
size from the reference [20], ( 1)P T⊗ =  > ( 0)P T⊗ =  > ( 0.5)P T⊗ =  
is obtained. Under the current fault state of the components, the fault 
possibility and the fault-free possibility of the satellite propulsion sys-
tem are higher than the semi-fault possibility, and the fault possibility 
of system is biggest.

Table 9. The membership degree of fault state of the root nodes with two 
fault states

Fault state 
of xi

Fuzzy support
radius variable r

Membership degree

0 1

x′1 = 0.3
0 0.3r≤ ≤

0.7
1 2

r
r

−
−

0.3
1 2

r
r

−
−

0.3 0.5r< ≤ 1 0

x′2 = 0.4
0 0.4r≤ ≤

0.6
1 2

r
r

−
−

0.4
1 2

r
r

−
−

0.4 0.5r< ≤ 1 0

x′5 = 0.3
0 0.3r≤ ≤

0.7
1 2

r
r

−
−

0.3
1 2

r
r

−
−

0.3 0.5r< ≤ 1 0

x′6 = 0.7
0 0.3r≤ ≤

0.3
1 2

r
r

−
−

0.7
1 2

r
r

−
−

0.3 0.5r< ≤ 0 1

x′9 = 0.3
0 0.3r≤ ≤

0.7
1 2

r
r

−
−

0.3
1 2

r
r

−
−

0.3 0.5r< ≤ 1 0

x′10 = 0.4
0 0.4r≤ ≤

0.6
1 2

r
r

−
−

0.4
1 2

r
r

−
−

0.4 0.5r< ≤ 1 0

x′11 = 0.2
0 0.2r≤ ≤

0.8
1 2

r
r

−
−

0.2
1 2

r
r

−
−

0.2 0.5r< ≤ 1 0

x′12 = 0.8
0 0.2r≤ ≤

0.2
1 2

r
r

−
−

0.8
1 2

r
r

−
−

0.2 0.5r< ≤ 0 1

Table 10. The membership degree of fault state of the root nodes with three 
fault states

Fault state 
of xi

Fuzzy support
radius variable r

Membership degree

0 0.5 1

x′3=0.2
0 0.2r≤ ≤ 0.3

0.5 2
r
r

−
−

0.2
0.5 2

r
r

−
−

0

0.2 0.25r< ≤ 1 0 0

x′4=0.6
0 0.1r≤ ≤ 0 0.4

0.5 2
r
r

−
−

0.1
0.5 2

r
r

−
−

0.1 0.25r< ≤ 0 1 0

x′7=0.1
0 0.1r≤ ≤ 0.4

0.5 2
r
r

−
−

0.1
0.5 2

r
r

−
−

0

0.1 0.25r< ≤ 1 0 0

x′8=0.7
0 0.2r≤ ≤ 0 0.3

0.5 2
r
r

−
−

0.2
0.5 2

r
r

−
−

0.2 0.25r< ≤ 0 1 0

Table 11. Grey fuzzy possibility of leaf node T in fault state 0

Fault state
Fuzzy support

radius vari-
able r

Interval value
Difference be-

tween maximum 
and minimum

T=0

0.05 [0.00869,0.01193] 0.00324

0.10 [0.00849,0.01170] 0.00321

0.15 [0.00515,0.00715] 0.00200

0.20 [0.00000,0.00000] 0.00000

Table 12. Grey fuzzy possibility of leaf node T in different 
fault states

Leaf node Fault state Interval value

T

0 [0.007, 0.010]

0.5 [0.004, 0.005]

1 [0.985, 0.987]
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4.2.3. Grey fuzzy state importance measures for satellite propul-
sion system

According to the calculation and analysis in Table 9, Table 10, and 
equation (4) to equation (6), when the fault state of root node x1 is 0, 
grey fuzzy possibility of leaf node T in the fault state 0.5 varies with 
the fuzzy support radius variable r, as shown in Fig.9. The maximum 
and minimum values of the grey fuzzy state importance of the root 
node x1 with leaf node T in the fault state 0.5 varies with the fuzzy 
support radius variable r, which can be obtained by the equation (5), 
as shown in Fig.10. Similarly, the curves of the grey fuzzy state im-
portance of the root node x1 with leaf node T in the fault state 1 can 
be obtained, as shown in Fig.11. Due to space limitations, the grey 
fuzzy state importance measures of other root nodes are not listed 
one by one.

From Fig.10 and Fig.11:
Analysing component from the state importance measures, un-(1) 
der the condition of the current fault state of the components, 

due to the uncertainty caused by the complex structures, the 
limited test samples, and the insufficient reliability data of the 
modern systems, ( )

q
De
T iI x  may be at any point on two curves 

and in the green area between two curves. Obviously, the re-
sults of the state importance measures are greatly influenced 
by the uncertainty.
The state importance measures of root nodes are affected by (2) 
current fault state of the components and the value of the vari-
able r. When the current fault state of component or variable 
r is different, the interval values of the state importance meas-
ures of root nodes are different, and the weak links of the sys-
tem are also different. When r = 0.125, the interval values of 
grey fuzzy state importance measures of root nodes xi with leaf 
node T in the fault states 0.5 and 1 are obtained, as shown in 
Table 13.

According to the state importance measures of root nodes, the 
weak links of the system can be identified. And the reliability of the 
system can be improved effectively by improving the reliability of 
the weak nodes.

From Table 13, based on the comparison rules of interval size 
from the reference [20], the grey fuzzy state importance measures of 
root nodes such as x3, x5, x7, x8 with leaf node T in the fault state 0.5 is 
weaker, and x4 is the weakest link for the fault state of the system. And 
the order of the grey fuzzy state importance measures of root nodes 
with leaf node T in the fault state 1 is: 1 12( )DeI x > 1 10( )DeI x > 1 6( )DeI x
> 1 4( )DeI x > 1 2( )DeI x > 1 9( )DeI x > 1 8( )DeI x > 1 1( )DeI x > 1 11( )DeI x >

1 3( )DeI x ( 1 5( )DeI x )> 1 7( )DeI x , obviously, x12 is the weakest link for 
the fault state of the system.

From the discussion in Section 4, it can be concluded that the pro-
posed method can characterize and quantify the fuzzy uncertainty of 
the fault state of the system with its components and the uncertainty of 
the logical relationship between the system and its components in an 
actual system. Besides, utilizing unique bidirectional reasoning abil-
ity of Bayesian network, reliability characteristic quantities of system 

Table 13. Grey fuzzy state importance measures of root 
nodes

xi

Grey fuzzy state importance measures

0.5 ( )De
iI x 1 ( )De

iI x

x1 [0.000,0.000] [0.001,0.006]

x2 [0.000,0.000] [0.003,0.009]

x3 [0.000,0.001] [0.000,0.003]

x4 [0.002,0.003] [0.005,0.008]

x5 [0.000,0.001] [0.000,0.003]

x6 [0.000,0.000] [0.004,0.010]

x7 [0.000,0.001] [0.000,0.002]

x8 [0.000,0.002] [0.002,0.006]

x9 [0.000,0.000] [0.001,0.007]

x10 [0.000,0.000] [0.005,0.011]

x11 [0.000,0.001] [0.000,0.004]

x12 [0.000,0.000] [0.111,0.137]

Fig. 9. 1( 0.5 | 0)P T x⊗ = =  changes with variable r

Fig. 10. 0.5 1( )DeI x  changes with variable r

Fig. 11. 1 1( )DeI x  changes with variable r
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such as reliability of leaf node and state importance measures of root 
nodes can be effectively analyzed. And some subjective information, 
such as expert knowledge, may be required for our work. The results 
are more consistent with the actual engineering situation.

5. Conclusions

A new complex system reliability analysis method based on 
non-deterministic membership functions and interval characteristic 
quantities is proposed by introducing fuzzy mathematics and grey 
system theory to Bayesian network. The trapezoidal fuzzy number 
(TrFN) with fuzzy support radius variable r is constructed to describe 
the fuzzy uncertainty of the fault state of the system and its compo-
nents. The conditional probability table with interval grey numbers is 
constructed to effectively express the uncertain fault logic relation-
ship between the system and its components. Moreover, a parameter 
planning model of the system reliability characteristic quantities is 
constructed, and the system reliability characteristic quantities are ex-
pressed as the form of interval values. 

Two sets of numerical experiments are carried out and they show 
the validity and advantages of the proposed method. The obtained re-
sults are expressed in the form of interval values, which can better 
represent reliability characteristic quantities under uncertain condi-
tions caused by the complex structures, the limited test samples, the 
insufficient reliability data, and so on. It also shows that the proposed 
method is a powerful reliability analysis method for complex uncer-
tainty multi-state system.
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